
overview Randomisation tests Cross-validation Jackknife Bootstrap Conclusion

Introduction to resampling methods

Vivien Rossi

CIRAD - UMR Ecologie des forêts de Guyane
vivien.rossi@cirad.fr

Master 2 - Ecologie des Forêts Tropicale
AgroParisTech - Université Antilles-Guyane

Kourou, novembre 2010

Vivien Rossi resampling



overview Randomisation tests Cross-validation Jackknife Bootstrap Conclusion

objectives of the course

1 to present resampling technics
randomization tests
cross-validation
jackknife
bootstrap

2 to apply with R
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Resampling in statistics

Description

set of statistical inference methods based on new samples drawn
from the initial sample

Implementation

computer simulation of these new samples
analysing these new data to refine the inference

Classical uses
estimation/bias reduction of an estimate (jackknife, bootstrap)
estimation of confidence intervalle without normality assumption
(bootstrap)
exacts tests (permutation tests)
model validation (cross validation)
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History of resampling techniques

1935 randomization tests, Fisher

1948 cross-validation, Kurtz

1958 jackknife, Quenouille-Tukey

1979 bootstrap, Efron
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Resampling mecanism

Why it works ?

can we expect an improvement by resampling from the same
sample?
no new information is brought back !
but it can help to extract useful information from the base sample

the idea
to consider the sample like the population
to simulate samples that we could see
to handle "scale" relationship into the sample
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Illustration with Russian dolls

How many flowers is there on the biggest doll?

↑
population

︸ ︷︷ ︸↑
sample sub-samples
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randomization tests or permutation tests

goal: testing assumption{
H0 : X and Y are independants
H1 : X and Y are dependants

principle: data are randomly re-assigned so that a p-value is
calculated based on the permutated data

permutation tests exhaust all possible outcomes⇒ exact tests⇒
exact p-value

randomization tests resampling simulates a large number of possible
outcomes⇒ approximate p-value
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example from Fisher: Lady tasting tea

a typical british story

In 1920, R. A. Fisher met a lady who insisted that her tongue was
sensitive enough to detect a subtle difference between a cup of tea
with the milk being poured first and a cup of tea with the milk being
added later. Fisher was skeptical . . .

Fisher experiment: he presented 8 cups of tea to this lady

4 cups were ’milk-first’ and 4 others were ’tea-first’:

tea or milk first ?
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example from Fisher: Lady tasting tea

tea or milk first ?

experiment result: the lady well detected the 8 cups

Did the woman really have a super-sensitive tongue?

Reformulation as a statistical test

H0: the order in which milk or tea is poured in a cup and the lady’s
detection of the order are independent.

H1: the lady can correctly tell the order in which milk or tea is
poured in a cup.
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example from Fisher: Lady tasting tea

Reformulation as a statistical test

H0: the order in which milk or tea is poured in a cup and the lady’s
detection of the order are independent.

H1: the lady can correctly tell the order in which milk or tea is
poured in a cup.

probabilities of all the possibilities under H0

(1,0,1,1,0,0,1,0) number of match probability
(1,1,1,1,0,0,0,0) 6 1/nb possibilities
(1,1,1,0,1,0,0,0) 4 1/nb possibilities

...
...

...
(1,0,1,1,0,0,1,0) 8 1/nb possibilities

...
...

...
(0,0,0,0,1,1,1,1) 2 1/nb possibilities
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example from Fisher: Lady tasting tea

Reformulation as a statistical test

H0: the order in which milk or tea is poured in a cup and the lady’s
detection of the order are independent.

H1: the lady can correctly tell the order in which milk or tea is
poured in a cup.

test result
The probability of matching the 8 cups under H0 is 1/(nb possibilities)

number of possibilities
(

8
4

)
= 70

i.e.The probability that the Lady matched by chance the 8 cups is
1/70 ≈ 0.014

exercise
What can we say if the Lady had matched only 6 cups ?
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example from Fisher: Lady tasting tea
exercise
What can we say if the Lady had matched only 6 cups ?

some tips to do it with R

exhausting all possibilities: see function combn
matching of all the possibilities: loops for or function apply

a solution
TeaCup <- function(NbCup=8){

NbMilk=NbCup/2
ref=rep(0,NbCup)
ref[sample(NbCup,NbMilk)]=1
possibilities=combn(1:NbCup,NbMilk)
score=rep(0,ncol(possibilities))
for (i in 1:ncol(possibilities)){

score[i]=sum(ref[possibilities[,i]])*2
}
Probabilities=table(score)/choose(NbCup,NbMilk)
return(Probabilities)

}
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example: Comparison of two groups

Hot-dog data

type calories
meat 186 181 176 149 184 190 158 139 175 148 152 111

141 153 190 157 131 149 135 132

poultry 129 132 102 106 94 102 87 99 107 113 135 142 86
143 152 146 144

Hypothesis test

H0: the hot-dog type and calories are independents
H1: the hot-dog type and calories are dependants

Exercise with R
Make the test, functions from package coin may be helpful
What test is it if you use the ranks ?
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example: test significance of covariate in linear
regression

Linear model

Yi = β0 + β1 x1
i + · · ·+ βp xp

i + εi i = 1, . . . ,n

hypothesis test

H0: Y and (X1, . . . ,Xp) are linearly independents
H1: Y and (X1, . . . ,Xp) are linearly dependents

exercise with R
simulate data according to the model
proceed a permutation test with the function lmp from the
package lmPerm
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Cross-validation

goal

to estimate how accurately a predictive model will perform in practice

principle
1 splits the dataset into training and validation data
2 fit model on training data
3 assess predictive accuracy on validation data (RMSE)

some types of cross-validation

random subsampling (randomly splits the data into training and
validation data) ×s

K fold randomly splits the data into K subsamples
( K − 1 for training and 1 for validation)×K

leave-one-out (N − 1 obs for training and 1 obs for validation)×N
. . .
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Example: K-fold

data: (xi , yi )i=1,...,100

5 folds: d1 = (xi , yi )i=1,...,20, d2 = (xi , yi )i=21,...,40,
d3 = (xi , yi )i=41,...,60, d4 = (xi , yi )i=61,...,80 and
d5 = (xi , yi )i=81,...,100

CV for modelM: ŷ = f (x , θ)

assess prediction for subsample d1
1 training: θ1 = arg minθ

∑100
i=21(f (xi , θ)− yi)

2

2 predicting: ŷi = f (xi , θ
1) for i = 1, . . . , 20

3 validation: MSE1 =
∑20

i=1(ŷi − yi)
2/20

idem for d2, . . . ,d5 → MSE2, . . . ,MSE5

CV = mean(MSE1,MSE2,MSE3,MSE4,MSE5)
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excercise with R

linear regression
1 simulate data according to the model

y = β0 + β1 x1 + · · ·+ βk xk + ε

2 compute CV for several covariate combination (use function
cv.glm form package boot

generalised linear model
1 simulate data according to the model

y ∼ P
(

exp(β0 + β1 x1 + · · ·+ βk xk )
)

2 compute CV for several covariate combination (use function
cv.glm form package boot

any model

see function crossval from package boostrap
make your own function
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Cross-validation caracteristics

generalities

easy to implement, the prediction method need only be available
as a "black box"
provides ECV a nearly unbiased estimate of the expectation of
the fitting criterion
can be very slow since the training must be carried out
repeatedly, methods to speed up exists but . . .

limitations
validation set and test set must drawn from the same population
be careful with dynamical systems and stratified population
instability for small sample
variance of CV can be large→ to take into account for model
selection
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the Jackknife

overview

proposed to reduce the bias of an estimator (delete if bias = a/n)
generally used to estimate the variance or covariance
useless for unbiased estimators (mean)
close to leave one out method
only adapted for estimators which are smooth function of the
observation

principle

let a sample x1, . . . , xn ∼ L(θ)

let T an estimator of θ computed with x1, . . . , xn

for i = 1, . . . ,n: T−i is the estimator computed with
x1, . . . , xi−1, xi+1, . . . , xn

the Jackknife estimators: TJ = T − n−1
n

∑n
i=1(T−i − T )

bias of the estimator: − n−1
n

∑n
i=1(T−i − T )
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excercise: Jackknife estimator for the variance

estimators of variance

Let x1, . . . , xn ∼ N (µ, σ2), the two usual estimators of σ2:

S2 =
1
n

n∑
i=1

(xi − x̄)2 and S̃2 =
1

n − 1

n∑
i=1

(xi − x̄)2

their expectations:

E [S2] =
n − 1

n
σ2 and E [S̃2] = σ2

exercise with R
simulate a sample
compute the jackknife estimator of S2 using the function jackknife
from package bootstrap
compare with the estimator S̃2
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The bootstrap
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The bootstrap

goal

estimate confidence interval of a parameter with or with
assumption on data distribution
estimate bias of an estimator

principle of the nonparametric bootstrap

starting point: x1, . . . , xn i.i.d ∼ L(θ)

repeat for k = 1, . . . ,K
1 sample with replacement x∗

1 , . . . , x
∗
n among x1, . . . , xn

2 compute θ∗k the estimates of θ with x∗
1 , . . . , x

∗
n

θ∗1 , . . . , θ
∗
K  inference on θ

many variants

parametric bootstrap
smooth bootstrap . . .
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The bootstrap: generalities

In Jackknife, the number of resamples is confined by the number
of observations (n-1).
In bootstrap, the original sample could be duplicated as many
times as the computing resources allow, and then this expanded
sample is treated as a virtual population.

Unlike cross validation and Jackknife, the bootstrap employs
sampling with replacement

In cross-validation and Jackknife, the n in the sub-sample is
smaller than that in the original sample
In bootstrap every resample has the same number of
observations as the original sample.
Thus, the bootstrap method has the advantage of modeling the
impacts of the actual sample size

Vivien Rossi resampling



overview Randomisation tests Cross-validation Jackknife Bootstrap Conclusion

example: median estimation based on bootstrap

sample: 10, 15, 17, 8 and 11→ median estimate = 11

resampling median
8 11 15 10 8 10

10 15 10 10 11 10
15 17 10 10 17 15
11 15 10 10 17 11
17 17 15 17 10 15
10 15 10 17 10 10

10 8 8 8 15 8

median estimate by bootstrap: mean(10,10,15,11,15,10,8)=11.29
sd of median estimate by bootstrap: sd(10,10,15,11,15,10,8)=2.69

exercise with R
estimate the confidence interval using the function bootstrap from
package bootstrap
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example: parametric bootstrap

principle of the parametric bootstrap

starting point: x1, . . . , xn i.i.d ∼ L(θ) where L known
compute θ̂ the mle of θ
repeat for k = 1, . . . ,K

1 sample x∗
1 , . . . , x

∗
n i.i.d ∼ L(θ̂)

2 compute θ∗k the mle of θ with x∗
1 , . . . , x

∗
n

θ∗1 , . . . , θ
∗
K  inference on θ

Exercise with R: the exponential distribution

simulate a sample from Exp(λ) with λ = 5
estimate λ using both parametric bootstrap and nonparametric
bootstrap (function boot from package boot)

Vivien Rossi resampling



overview Randomisation tests Cross-validation Jackknife Bootstrap Conclusion

example: parametric bootstrap

principle of the parametric bootstrap

starting point: x1, . . . , xn i.i.d ∼ L(θ) where L known
compute θ̂ the mle of θ
repeat for k = 1, . . . ,K

1 sample x∗
1 , . . . , x

∗
n i.i.d ∼ L(θ̂)

2 compute θ∗k the mle of θ with x∗
1 , . . . , x

∗
n

θ∗1 , . . . , θ
∗
K  inference on θ

Exercise with R: the exponential distribution

simulate a sample from Exp(λ) with λ = 5
estimate λ using both parametric bootstrap and nonparametric
bootstrap (function boot from package boot)

Vivien Rossi resampling



overview Randomisation tests Cross-validation Jackknife Bootstrap Conclusion

example: resampling residual

principle of the resampling residual

starting point: (x1, y1), . . . , (xn, yn) and a model f (·, θ)

calibrate the model→ θ̂: ŷi = f (xi , θ̂) εi = ŷi − yi

repeat for k = 1, . . . ,K
1 ∀i , y∗

i = yi + ε̃ with ε sampled from ε1, . . . , εn
2 calibrate the model with (x1, y∗

1 ), . . . , (xn, y∗
n ) θ∗k

θ∗1 , . . . , θ
∗
K  inference on θ

exercise with R: the case of the linear model
simulate data according to a linear model
estimate regression parameters using the function lm.boot from
the package simpleboot
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Rationale of supporting resampling

Empirical empirical-based resampling do not require assumptions on
the sample or the population.

Clarity resampling is clean and simple. High mathematical
background is not required to comprehend it

Small sample size Distributional assumptions requierd by classical
procedures are usually met by a large sample size.
Bootstrapping could treat a small sample as the virtual
population to "generate" more observations

Non-random sample Resampling is valid for any kind of data, including
random and non-random data.

Large sample size Given a very large sample size, one can reject virtually
any null hypothesis→ divide the sample into subsets, and
then apply a simple or double cross-validation.

Replications Repeated experiments in resampling such as cross-validation
and bootstrap can be used as internal replications.
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Criticisms of resampling

Assumption "You’re trying to get something for nothing". Every theory and
procedure is built on certain assumptions and requires a leap
of faith to some degree. Indeed, the classical statistics
framework requires more assumptions than resampling does

Generalization resampling is based on one sample and therefore the
generalization cannot go beyond that particular sample.

Bias confidence intervals obtained by simple bootstrapping are
always biased though the bias decreases with sample size.
(for normal case the bias in is at least n/(n-1))

Accuracy for small sample resampling may be less accurate than
conventional parametric methods. Not very convincing
argument because today computers are very powerful.

pros and cons in both traditional and resampling methods carry
certain valid points. → the appropriateness of the methodology highly
depends on the situation
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R packages for resampling methods

boot quite a wide variety of bootstrapping tricks.
bootstrap relatively simple functions for bootstrapping and related

techniques.
coin permutation tests

Design includes bootcov for bootstrapping the covariance of
estimated regression parameters and validate for
testing the quality of fitted models by cross validation or
bootstrapping.

MChtest Monte Carlo hypothesis tests: tests using some form of
resampling.

meboot a method of bootstrapping a time series.
permtest a function for permutation tests of microarray data.

resper for doing restricted permutations.
scaleboot produces approximately unbiased hypothesis tests via

bootstrapping.
simpleboot performs bootstraps in simple situations: one and two

samples, and linear regression.
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